Expression of aldehyde dehydrogenase family 1, member A3 in glycogen trophoblast cells of the murine placenta.

نویسندگان

  • J E Outhwaite
  • B V Natale
  • D R C Natale
  • D G Simmons
چکیده

INTRODUCTION Retinoic acid (RA) signaling is a well known regulator of trophoblast differentiation and placental development, and maternal decidual cells are recognized as the source of much of this RA. We explored possible trophoblast-derived sources of RA by examining the expression of RA synthesis enzymes in the developing mouse placenta, as well as addressed potential sites of RA action by examining the ontogeny of gene expression for other RA metabolizing and receptor genes. Furthermore, we investigated the effects of endogenous RA production on trophoblast differentiation. METHODS Placental tissues were examined by in situ hybridization and assayed for RARE-LacZ transgene activity to locate sites of RAR signaling. Trophoblast stem cell cultures were differentiated in the presence of ALDH1 inhibitors (DEAB and citral), and expression of labyrinth (Syna, Ctsq) and junctional zone (Tpbpa, Prl7b1, Prl7a2) marker genes were analyzed by qRT-PCR. RESULTS We show Aldh1a3 is strongly expressed in a subset of ectoplacental cone cells and in glycogen trophoblast cells of the definitive murine placenta. Most trophoblast subtypes of the placenta express RA receptor combinations that would enable them to respond to RA signaling. Furthermore, expression of junctional zone markers decrease in differentiating trophoblast cultures when endogenous ALDH1 enzymes are inhibited. DISCUSSION Aldh1a3 is a novel marker for glycogen trophoblast cells and their precursors and may play a role in the differentiation of junctional zone cell types via production of a local source of RA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression profiling of human endometrial-trophoblast interaction in a coculture model.

Investigating the interaction of human endometrium and trophoblast during implantation is difficult in vitro and impossible in vivo. This study was designed to analyze the effect of trophoblast on endometrial stromal cells during implantation by comprehensive gene profiling. An in vitro coculture system of endometrial stromal cells with first-trimester trophoblast explants was established. Trop...

متن کامل

Transcription factor AP-2gamma regulates murine adenosine deaminase gene expression during placental development.

Trophoblast cells are specialized extra-embryonic cells present only in eutherian mammals. They play a major role in the implantation and placentation processes. To understand better the molecular mechanisms that control the development and function of trophoblast cells, we sought to identify the transcription factors that regulate murine adenosine deaminase (ADA) gene expression in the placent...

متن کامل

Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta

Imprinted genes are expressed primarily from one parental allele by virtue of a germ line epigenetic process. Achaete-scute complex homolog 2 (Ascl2 aka Mash2) is a maternally expressed imprinted gene that plays a key role in placental and intestinal development. Loss-of-function of Ascl2 results in an expansion of the parietal trophoblast giant cell (P-TGC) lineage, an almost complete loss of ...

متن کامل

The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources

Imprinted genes, which are expressed from a single parental allele in response to epigenetic marks first established in the germline, function in a myriad of processes to regulate mammalian development. Recent work suggests that imprinted genes may regulate the signalling function of the placenta by modulating the size of the endocrine compartment. Here we provide in vivo evidence that this hyp...

متن کامل

Migratory trophoblast cells express a newly identified member of the prolactin gene family.

Rodents possess an expanded prolactin (PRL) family of genes. These genes encode for a family of structurally related hormones/cytokines that are expressed most prominently in the anterior pituitary, uterus and placenta. In this study, we have identified a new member of the rat PRL family through a search of the National Center for Biotechnology Information expressed sequence database. The cDNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Placenta

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2015